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1. Introduction

Trends in atmospheric ozone continue to be an environmental concern. Drifts in satellite observations
are the major obstacle in the detection of changes in global ozone over the long term, Careful re-analysis
of satellite ozone data along with groundbased observations have more or less corroborated
photochemical models which predict ozone depletion [1]. However there remains margin of error in the
observations that is as large as the trend itself.

The National Plan for Stratospheric Monitoring {2] calls for monitoring global ozone for at least the next
ten years employing the NOAA polar orbiting satellites. Ozone ohservations will be made with the Sclar
- Backscatter Ultraviolet Spectral Radiometer Mod 2 (SBUV/2) which is a refinement of the SBUV
instrument flying on NASA's Nimbus-7 satellite [3]. The first instrument in the operational series began
taking data from the NOAA-9 spacecraft in February 1985. A second instrument was launched on
NOAA-11 in September 1988. Both continue to operate.

Earlier attempts to calibrate satellite data relied on comparisons with ground based observations.
However, differences in instrumental techniques severely complicated these efforts. This problem will
be over come by regular flights, about once per year, of the Shuttle Solar Backscatter Ultraviolet
radiometer (SSBUV). The data from the SSBUV instrument will be compared with nearly coincident
data taken by the NOAA satellite instruments. This procedure will permit a direct calibration transfer in
space [4] since the two instruments observe the same quantities thereby bypassing the inversion
algorithm which converts the observations to ozone amounts.

2. Flight Instrumentation

The SSBUV payload consists of a SBUV/2 instrument that has been modified for Shuttle flight [4]. The
payload is packaged into two Getaway Special canisters as shown in figure 1. One canister contains the
instrument, and supporting optical systems. The second canister contains batteries and the data
recording system. This stand-alone capability allows easy access to the Shuttle which affords some
assurance of regular flights. The SSBUV Instrument is the engineering model to the series of SBUV/2
instruments now flying the NOAA satellites. The Nimbus and NOAA instruments employ a reflective
diffuser to bring sunlight into the monochromator as the spacecraft traveled over the pole. For the solar
irradiance measurement, the SSBUV employs a transmission diffuser, consisting of two ground
crystalline quartz plates, which is deployed in front of the instrument entrance aperture. Therefore the
solar irradiance measurement is made normal to the diffuser. SSBUYV also contains a unique inflight
calibration system which tracks instrument radiometric sensitivity and wavelength stability during flight.

3. Instrument Calibration

Maintaining accurate and precise instrument calibrations over the long term is a major objective of the
SSBUYV program. Procedures have been developed to maintain calibrations with a precision of 1 percent
over the long term [4]. This precision is essential in deriving a long term ozone data set. Calibration
accuracy relies on the accuracy of the radiometric standards provided by the National Institutes of
Standards and Technology (NIST). The accuracy of the radiometric standards will be tracked by a
laboratory reference standard spectrometer with radiometric characteristics similar to the flight
instrument. A laboratory comparison program involving several other satellite and Shuttle solar
irradiance experiments is now underway. This comparison program is being coordinated by NIST.
Figure 2 depicts the overall elements of the SSBUV calibration program.
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To date the calibration efforts have demonstrated excellent results [5,6]. Calibration repeatability tests

indicate that irradiance and radiance calibration constants can be maintained to the order of 0.5 percent (1

sigma). Several other important instrument characteristics such as, linearity and gain wavelength

~ dependence have been measured to a precision of a few tenths of a percent. These results were acquired
through a series of laboratory calibrations and environmental testing. This suggests that, with careful

attention to all phases of the calibration process, that a 1 percent long-term radiometric calibration

precision for SSBUV is a realistic goal.

4. Overall Mission Requirements

The goal of the SSBUYV is to remove the uncertainty in the SBUV/2 data set from the NOAA satellite
series to value less than the expected ozone trend. The statistical uncertainty (at the 2 sigma level)
remaining in the corrected data is the factor which ultimately limits the ability to detect long term ozone
changes. Variables determining this uncertainty include: a) the magnitude of the ozone trend, b) the
duration of the ozone monitoring period, c) the frequency of SSBUYV flights, d) the number of
coincident measurements between SSBUV and SBUV/2 for a given shuttle mission, ¢) atmospheric
variability, f) instrument and measurement precision, and g) long term SSBUV calibration precision.
Maintaining instrument calibration to within 1 percent is the most critical factor in performing the in orbit
long term calibration [7]. :

Each one of these variables have been treated objectively {4] and can be combined to compute the
Shuttle flight frequency needed to correct the satellite data set for a given ozone monitoring period. The
results of this computation is given in figure 3. The curves correspond to heights where SSBUV
observes ozone which are a function of wavelength. The dashed line helps to illustrate; for example, if
the SSBUV flies every 8 months, a monitoring period of 8 years is required to correct the SBUV/2 data
set at 40 km to the necessary precision. At 47 km, where the ozone trend is less, 10 years of
observations are required at the 8 month flight schedule.

5. Calibration of the Satellite Data Set

Procedures for combining the SSBUV an SBUV/2 data sets are under development. Existing ozone
satellite data has been used as model data sets to test these procedures [8]. The average factor, C(i,j), for
correcting the SBUV/2 data set can be calculated from SSBUV and SBUV/2 coincident observations of
the atmospheric albedo, A(i,j,k) where i=wavelength, j=the SSBUV flight number, and k=number of
coincidences per flight. S

N
ChLj=0MN)Z [Ag G, j, kA2 (4, j, k)] (1)
k =1
Where Ag(i,j.k) and Aj(i,j,k) are the coincident observations from SSBUV and SBUV/2 respectively.

One flight of the SSBUYV produces one value of C(i,j) at each wavelength, i. Interpolation in time
between the derived C(i,j) yields correction factors for all times during the SBUV/2 program.
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6. SSBUV First Flight

The first flight of SSBUV occurred on October 19, 1989 on the Shuttle Atlantis. During that period
coincident observations were taken with the SBUV on Nimbus-7 and the SBUV/2's on NOAA-9 and
NOAA-11. Thirty one orbits of earth observations were obtained resulting in over 30 matchups with
each of the satellite observations where a one hour window was the matchup criteria. Solar observations
and in flight calibration checks were conducted at the beginning, near the middle, and at the end of the
observing period. Figure 4 illustrates the one hour window matchup locations for the three satellites
during the SSBUYV observing period.

An initial and preliminary comparison has been performed between the solar irradiances observed by the
SSBUYV and the day 1 solar irradiance (March, 1985) observed by the NOAA-9 SBUV/2. For the ozone
observing channels agreement was about +/- 2%.

7. Summary

Detecting an ozone trend is a formidable task since our observing systems drift at a rate that is
comparable to the trend itself. Satellite observations must be carefully checked to accurately reveal an
ozone trend. A program is now underway in which an instrument similar to the ozone sounders on the
NOAA operational satellites is flown regularly on the Space Shuttle to perform in orbit calibration checks
by comparing observables. It is essential that the calibration of the Shuttle instrument be known to 1%
over the long term. Tests to date demonstrate that this is an achievable goal.
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Correction factor which normalizes the SBUV/2 albedos to the SSBUV
albedos.

A= wavelength
j= shuttle mission
k= number of coincidences

Correcting actual SBUV data with a given trend with simulated SSBUV
data results in a long term data set that is less than ( +2 sigma)
the expected trend due to anthropogenic by-products.

Paper submitted JOAT, Frederick and Hilsenrath
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Attachment 11
Total Ozone Ozonesonde and Umkehr Observations for
Satellite Ozone Data Validation
W.0. Komhyr, R.D. Grass, and G.L. Koenig
NOAA/ERL-CMDL
R.D. Evans, P. Franchois, and R.L. Leonard
University of Colorado, CIRES






